Environment-wide studies (EWAS) on Metabolic-syndrome-related phenotypes: T2D and Cholesterol

Chirag Patel, MS
Program in Biomedical Informatics
Department of Medicine and Pediatrics
NTP Workshop, 1/11/11

"Exposome"-wide measures on an epidemiological scale

What if we could define and use exposome as we do the genome?

ie, GWAS to "E"WAS

HapMap project: http://hapmap.ncbi.nlm.nih.gov

Illumina "variant chip"

Rappaport S, Smyth M. Environment and Disease Risks.

Science (2010) vol. 330 (6003) pp. 460-461

Genome-Wide Association Studies (GWAS)

~100,000 - 1,000,000 association tests

What specific genetic loci are associated to disease?

Environment-Wide Association Studies (EWAS)

What specific **environmental** "loci" are associated to disease?: ie, T2D, lipid levels, obesity, etc?

Why "EWAS"?

Potential for agnostic, comprehensive, and systematic association studies

However: confounding & reverse causality bias are multiplied

Ioannidis JPAI, Loy EY, et al, (2009) Researching genetic vs nongenetic determinants of diseases: a comparison and proposed unification. *Sci Trans Med* vol. 1(7)7ps8

NHANES Measurements Environmental "E-Loci" Chip

Demographics (N ~=10,000)	Examination (N ~= 3000)
Age Sex Income Education Ethnicity	Blood Pressure Body Measurement Diet & Nutrient Intake Vision Oral Health
Laboratory (N ~= 3000)	Questionnaire (N ~=10,000)
Biochemistry: Triglycerides, cholesterol, glucose, Cl, Na, K, PSA, etc.	Disease & Health Status
	Drug use
Exposures: Heavy metals, dioxins, PCBs, phenols, phthalates;	Physical Activity Health & Fitness History
Infectious Diseases Allergens	Occupation

Cohorts: 1999-2000 2001-2002 2003-2004 2005-2006

Restricted-use: genetic variants!

EWAS Methodology

A Number of Factors Per Class

99-2000 2001-2002 2003-2004 2005-2006

Factor "class"

Disease status
Classification

B Disease Phenotypes

Fasting Glucose > 125 mg/dL? N=109-3190 (8% of total)

log10(trigly.) N=109-3618

log10(LDL) N=101-3368

log10(HDL) N=222-7485

Linear Modeling

Empirical False Discovery Estimation

C Screening For Disease-associated Factors

z_{factor} = transformed x_{factor}
- age, age*age, sex, ethnicity, BMI, SES

FDR(α) \leq 10%

Empirical FDR estimation
Permute Phenotype Levels
1000x

FDR(α) \leq 10%

P-value(β_{factor}) $< \alpha$ in 2 or more cohorts?

"Validation"

EWAS Methodology, cont'd

Pesticides, Chlorophenol Pesticides, Pyrethyroid 15 11 Phenols Phthalates Phytoestrogens 12 Polybrominated Ethers 10 Polyflourochemicals Virus 10 Volatile Compounds 169 182 258 96 total

Linear Modeling

Empirical False Discovery Estimation

Sensitivity analyses: adjust for additional factors

Correlation globes

 $(\rho > 0.2)$

EWAS on T2DM

"Novel" Findings: heptachlor γ-tocopherol

Known
Associations:
β-carotene
vitamin D
PCBs
Interesting
Patterns:
dioxins, pesticides,
PCBs

ORs adjusted:
BMI, SES, ethnicity, age, sex
Δ 1SD *or* vs. negative test

Patel CJ, Bhattacharya J, Butte AJ, (2010) An Environment-Wide Association Study (EWAS) on T2DM. *PLoS ONE* vol. 5(5)

EWAS on HDL-C

adjusted for: BMI, SES, ethnicity, age, age², sex effect= % Δ for Δ 1SD or vs. negative test

Patel CJ, Cullen MR, Ioannidis JAP, J, Butte AJ, (2010). Non-genetic associations and correlation globes for determinants of Lipid Levels: an EWAS. In review.

Effect Sizes For Validated Factors:

single cohorts adjusted for: BMI, SES, ethnicity, age, age², sex effect= $\% \Delta$ for Δ 1SD FDR ~ 10%

'combined' adjusted for: BMI, SES, ethnicity, age, age², sex, blood pressure, cohort, diabetes, waist circumference effect= $\% \Delta$ for Δ 1SD FDR < 1%

"Assessing" Bias from Self-Report Data

"source" of bias examples

disease status	diabetes, CHD, heart attack
drug use	metformin, statins
supplement use	count of total supplements
physical activity	metabolic equivalents
recent food intake	total nutrients

total:62

self-report data are sequentially added to final model effect sizes for environmental variable are compared

Assessing Bias from Self-report data Factors Validated for HDL-C

HDL-C "Correlation Globe" Dependencies of Validated Factors

red: positive correlation

blue: negative correlation

all $|\rho| > 0.2$

What's next?

Validation: longitudinal studies & model systems

Genome-wide by exposome-wide studies

Missing Heritability*: Genome meets Exposome

Variants ascertained from genome-wide studies

have described little disease variability

Type 2 Diabetes: 6% (18 loci)

HDL-Cholesterol: 5% (7 loci)

Considering genome in combination with exposome might give a better estimate of heritability

Do known disease-associated genetic variants interact with environmental factors found in EWAS?

Example: Type 2 Diabetes

Conclusion and Discussion: EWAS and the "exposome"

Comprehensive, transparent, appropriate

 However: reverse causality, confounding amplified

 Need to define, characterize, and make accessible the "exposome"

Acknowledgements & Thanks

Jay Bhattacharya

Mark Cullen

John Ioannidis

Atul Butte

CDC/NCHS/NHANES

Kris Thayer/NTP

Butte Laboratory

Biomedical Informatics

Program

Stanford School of Pediatrics

and Medicine

National Library of Medicine

Questions?

chirag.patel@stanford.edu

